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Abstract

We extend Gul�s (1991) model of disappointment aversion into a dynamic setting
while keeping its basic characteristics intact. We show that for a disappointment-
averse decision maker, splitting a lottery into several stages reduces its value. This
result depends solely on the sign of the coe¢ cient of disappointment aversion. It can
help explain why people often buy periodic insurance for moderately priced objects at
much more than the actuarially fair rate. We discuss the sense in which the model is
immune from the calibration critiques of Rabin (2000) and Safra and Segal (2008).
JEL codes: D03, D80, D81
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1. Introduction

Assume you are waiting to receive an important announcement. For concreteness, assume

that you �lled a betting ticket regarding the results of a horse race, which is taking place at

the moment and will end in a short time. You have two ways of spending your time until

the race ends. The �rst is to turn on the radio and hear the commentator describing �live�

what is happening at the race. The second would be to sit back, wait patiently, and turn the

radio on only once the results of the race are determined. Which one seems more appealing

to you?

The answer to this question may depend on many factors, such as the amount of money

you spent on the ticket, your �nancial condition, and most of all, on your preferences. A

plausible answer might be: �I prefer to wait and hear only the �nal result. Being exposed to

the resolution process bears the risk of perceiving intermediate outcomes as disappointing.

Therefore, since I take disappointments hard, getting partial information in the middle of

the process will only stress me further and cause me to su¤er more on average.�

�First version July 2010. We thank Wolfgang Pesendorfer and Ella Segev for helpful suggestions.
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Gul (1991) suggested a model to study disappointment-averse individuals. According to

his model, the decision maker divides the support of a certain lottery into two groups: the dis-

appointing and the elating prizes. The threshold to this division is determined endogenously,

as follows: equipped with a utility function over prizes, he calculates the expected utility

of the lottery while uniformly assigning to all the disappointing outcomes a greater weight.

The value is thus the certainty equivalent of the lottery where all prizes with a value higher

than this number are considered elations and all prizes with lower value disappointments.

(Mathematical de�nition in Section 2, equation (1).)

Gul�s basic model is static, as all the decision maker cares about is the probability

distribution over �nal outcomes. To study the e¤ect of potential disappointment emerging

from gradual exposure to risk, one needs to extend his model into a dynamic setting. This

requires some additional assumptions regarding the way compound lotteries (i.e., lotteries

whose outcomes are tickets to other lotteries) are evaluated.

As we describe in detail below, we assume that the decision maker folds-back the proba-

bility tree and applies the same (static) preferences as in Gul�s model in every stage. The im-

plied model maintains preferences, now de�ned over a richer domain, to be fully determined

by the pair (u; �)� a utility function over prizes and a coe¢ cient of disappointment aversion

that determines the additional weight given to the disappointing outcomes, which is thought

of as a characteristic of the decision maker. Palacios-Huerta (1999) adopted this approach

and by working out an example, demonstrated the tendency of a disappointment-averse in-

dividual to prefer getting information that is resolved all at once rather than gradually. The

lottery used in his example, however, is very special and contains only two prizes. Thus

the division to disappointment and elation is, in that example, obvious at every step of the

folding-back process.

Our aim in this paper is to show that Palacios-Huerta�s observation holds in the general

case and, in particular, to emphasize the linkage between the sign of the coe¢ cient of dis-

appointment aversion and the attitude toward the way in which uncertainty is resolved over

time. We show that a disappointment-averse decision maker, that is, one who is character-

ized by the pair (u; �) and � > 0, will always prefer any compound lottery to be resolved in
a single stage. The opposite is true if � 6 0.
As an application, we demonstrate that disappointment-averse individuals are likely to

purchase dynamic insurance contracts, such as periodic insurance for electrical appliances

and cellular phones, at much more than actuarially fair rates. The reason is that in addition

to the standard risk premium, they are willing to pay a premium to avoid being exposed

to the gradual resolution of uncertainty. These two premia reinforce one another, and this

aspect makes the individual more reluctant to take risks. While the gradual resolution
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premium is non-negative for � > 0, it is not an increasing function of �. This observation is
valid in the general case and is independent of the speci�c insurance problem we consider.

When � is extremely large, the gradual resolution premium converges to zero, which is its

level when the decision maker is an expected utility maximizer (� = 0). Therefore, there is

always an interior value of � in which the gradual resolution premium is maximized.

Dillenberger (2010) studied recursive preferences over compound lotteries and charac-

terized preferences for one-shot resolution of uncertainty, that is, preferences to have any

compound lottery resolved in a single stage. Dillenberger (2010, Section 4.2.1) pointed out

that any disappointment-averse decision maker displays this property. In this paper we give

a direct proof of this assertion.1 It is worth noting that within the disappointment aversion

class, only the parameter � (and not the shape of the utility function over money) accounts

for preferences for one-shot resolution of uncertainty. This feature sheds light on the driving

force behind the variety of applications that use Gul�s preferences (see, for example, Ang,

Bekaert and Liu (2005) who used recursive disappointment aversion preferences to study a

dynamic asset allocation problem, and Andries and Haddad (2015) who used such prefer-

ences to develop a theory of inattention, which is based solely on preferences rather than on

an external attention constraint).

The remainder of the paper is organized as follows: In Section 2 we present the model

and the statement of our main result. In Section 3 we give a complete mathematical proof

of our result. In section 4 we apply our model to study an insurance problem. In Section

5 we discuss related literature, suggest an extension of the model to incorporate intrinsic

preferences for early or late resolution of uncertainty, and remark on the relation of our

result with the common hypothesis that, in risky environments, preferences are de�ned over

distributions over �nal-wealth levels.

2. The model and the main theorem

We consider an interval X � R of prizes. A lottery p is a vector of probabilities indexed

by x 2 X such that
P

x2X px = 1, and we restrict to the case in which in any given lottery

the number of possible prizes ( i.e., prizes with non-zero probability) is �nite. To avoid

complicating notation, we assume that x 2 X is both the prize and its perceived value. In

the context of this paper no generality is lost by this, and the same results hold if we assume

a utility function u : X ! R, replacing the prize x by the value u(x).
The value of a lottery p is a function that assigns to each lottery a number between the

1Relying on this result, Cerreia Vioglio, Dillenberger, and Ortoleva (2015) argue that Gul�s static pref-
erences with � � 0 also admits � besides the implicit representation in equation (1) � what they term a
Cautious Expected Utility representation.
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largest and the smallest x 2 X and that depends on a parameter �1 < � <1. � should be
thought of as a property of the decision maker that captures his disappointment aversion, if

� > 0, or elation seeking, if �1 < � < 0. (For � = 0 the value will simply be the standard
expectation.) The value V�(p) is de�ned as follows: it is the unique solution of the equation

v =

P
fx:x>vg

xpx + (1 + �)
P

fx:x�vg
xpx

1 + �
P

fx:x�vg
px

(1)

As discussed in the introduction, this de�nition goes back to Gul (1991). Thus, when

computing the value V�(p), if say � > 0, we average the prizes in such a way that disap-

pointing prizes are given an extra weight. The number V�(p) is the unique number such

that if the decision maker sets his disappointment-satisfaction threshold at V�(p), then he is

indi¤erent between carrying out the lottery and receiving V�(p) dollars.

We turn to the de�nition of the value of a two-stage lottery. Assume that one is given

m lotteries, denoted p(j) for j = 1; : : : ;m. Each lottery p(j) is de�ned by the probabilities it

assigns to the di¤erent x 2 X, which we denote p(j)x . For the two-stage lottery, one is given
probabilities �1; : : : ; �m for gaining the lotteries p(1); : : : ; p(m) respectively. In the �rst stage

a lottery p(j) is realized with probability �j and then, in the second stage, a prize is obtained

according to p(j).

Note that the probability distribution over �nal prizes induced by the two-stage lottery

is the one in which a prize x is won with probability px =
Pm

j=1 �jp
(j)
x . The value of this

reduced, one-stage lottery is as de�ned in (1) above, V�(p). This corresponds to the case

where the decision maker is not exposed to the gradual resolution of uncertainty.

On the other hand, if the decision maker sees the results of the �rst stage of the lottery,

then he or she might be disappointed or elated also with the results of this �rst stage. The

value of the two stage lottery in this case will be the value of a lottery Q with prizes V�(p(j))

with probabilities �j, for j = 1 : : :m. Notice that the same parameter � is used to decide

the value of each lottery p(j) and the value of the lottery Q.2

We now show that with the above de�nitions, a decision maker who is disappointment-

averse prefers not to be exposed to the gradual resolution of uncertainty, and an elation-

seeking decision maker will want to receive information as many times as possible during the

resolution process, despite the fact that he has no possibility of a¤ecting the outcome. More

precisely our main theorem reads as follows:

2This corresponds to the time neutrality assumption of Segal (1990), according to which the decision
maker does not care about the time in which uncertainty is resolved as long as resolution happens in a single
stage. See Section 5.1 for further discussion.
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Theorem 1. Given m lotteries p(j) = (p
(j)
x )x2X , and numbers 0 � �j � 1, j = 1; : : : ;m,

such that
Pm

j=1 �j = 1, de�ne the lotteries p and Q as follows:

p assigns probability
Pm

j=1 �jp
(j)
x to the prize x 2 X,

Q assigns probability �j to the prize V�(p(j)).

Then, for � � 0 we have V�(p) � V�(Q), and for �1 < � � 0 we have V�(p) � V�(Q).

3. Proof of the main theorem

In order to prove Theorem 1, we need to �rst discuss the function V�(p). We �x � > 0 and

omit the index � throughout this section. The case � < 0 is completely analogous, and we

comment on it at the end of the proof.

Rearranging equation (1), we see that V�(p) is de�ned as the intersection of the function

fp(v) =
X

fx:x>vg

px(x� v) + (1 + �)
X

fx:x�vg

px(x� v)

with the v-axis, that is, V�(p) is the solution of fp(v) = 0. This function is continuous,

decreasing, and linear on every interval [xi; xi+1] that does not include points x with px > 0

in its interior. The slope of fp at a point v 2 R (with pv = 0) is equal to (�1 � �
P
x�v
px).

If p is non trivial (assigning positive probability to more than one value) then one has

fp(minX) > 0 and fp(maxX) < 0.

Given two lotteries p and Q, showing that V�(p) � V�(Q) is equivalent (since fp is

decreasing) to showing that fp(V�(Q)) � 0. Notice that by the de�nition of p and of fp we
have that fp(v) =

Pm
j=1 �jfj(v) where we have denoted fp(j)(v) = fj(v).

For notational convenience we also denote the value of p(j) by vj = V�(p(j)) and the value

of Q by w = V�(Q), so that w is the solution for the equation

fQ(w) =
X

fj:vj>wg

�j(vj � w) + (1 + �)
X

fj:vj�wg

�j(vj � w) = 0:

The above implies that X
�jvj � w = �

X
fj:vj�wg

�j(w � vj): (2)

In particular we see here that w � E(Q), the expected value of Q.

Proof of Theorem 1. We wish to show that fp(w) � 0. We subtract from it 0 =
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Pm
j=1 �jfj(vj), which does not change the expression, and regroup the terms as follows

fp(w) =
mX
j=1

�j(fj(w)� fj(vj))

=
X

fj:vj<wg

�j( X
fx:x>wg

p(j)x (vj � w)+

X
fx:vj<x�wg

p(j)x (�x+ vj � (1 + �)w) + (1 + �)
X

fx:x�vjg

p(j)x (vj � w))

+
X

fj:vj>wg

�j( X
fx:x>vjg

p(j)x (vj � w)+

X
fx:w<x�vjg

p(j)x (��x+ (1 + �)vj � w) + (1 + �)
X

fx:x�wg

p(j)x (vj � w))

=

 
mX
j=1

�jvj � w
!
+

�

24 X
fj:vj<wg

�j

0@ X
fx:vj<x�wg

p(j)x (x� w) +
X

fx:x�vjg

p(j)x (vj � w)

1A35+
�

24 X
fj:vj>wg

�j

0@ X
fx:w<x�vjg

p(j)x (vj � x) +
X

fx:x�wg

p(j)x (vj � w)

1A35 :
We already see that the �rst and third terms are nonnegative. We now use the relation

(2) and substitute the �rst term by 
mX
j=1

�jvj � w
!
= �

X
fj:vj<wg

�j(w � vj) = �
X

fj:vj<wg

�j
X
x2X

p(j)x (w � vj):

The constant � appears as a coe¢ cient in all three terms now, so we have that

fp(w)=� =

24 X
fj:vj<wg

�j

0@ X
fx:vj<x�wg

p(j)x (x� vj) +
X

fx:x>wg

p(j)x (w � vj)

1A35
+

24 X
fj:vj>wg

�j

0@ X
fx:w<x�vjg

p(j)x (vj � x) +
X

fx:x�wg

p(j)x (vj � w)

1A35 :
It is evident that both expressions on the right-hand side are non negative. In particular

we get that for � > 0, fp(w) � 0, which in turn implies that V�(p), which is the zero of
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fp(v), satis�es V�(p) � w = V (Q). We did not use the fact that � > 0 anywhere in the

derivation (which consisted of equalities only), and similarly we get that for �1 < � < 0 one
has fp(w) � 0, so that in the case of elation seeking we have V�(p) � w = V�(Q). �

4. Application, an insurance problem

Our basic model and Theorem 1 can be readily extended to lotteries with arbitrary (�nite)

number of stages. The decision maker evaluates any n-stage lottery by folding back the prob-

ability tree and applying the same V� in each stage. If � > 0, then a decision maker with

such preferences prefers to replace each compound sub-lottery with its single-stage counter-

part. Let Qn be an n-stage lottery that induces the same probability distribution over �nal

outcomes as p. The amount V�(p)� V� (Qn) is the gradual resolution premium, that is, the
amount that the decision maker would pay to replace Qn with P .3 By Theorem 1, � > 0

implies V�(p)� V� (Qn) > 0. The basic model can also be extended to allow the individual
to take intermediate actions that might a¤ect his ultimate payo¤. In such situations, the

(intrinsic) attitude towards the gradual resolution of uncertainty interacts with the (instru-

mental) value of additional information, which allows the individual to condition his actions

on what he learns.

Understanding the e¤ect of the gradual resolution premium, insurance companies, when

o¤ering dynamic insurance contracts, can require much greater premiums than the actuari-

ally fair ones and still be sure of consumers�participation. This can help explain why people

often buy periodic insurance for moderately priced objects, such as electrical appliances and

cellular phones, at much more than the actuarially fair rates. An example is given by Tim

Harford (�The Undercover Economist�, Financial Times, May 13, 2006):

�There is plenty of overpriced insurance around. A popular cell phone retailer

will insure your $90 phone for $1.70 a week� nearly $90 a year. The fair price of

the insurance is probably closer to $9 a year than $90.�

To illustrate, consider the following insurance problem: an individual with Gul�s prefer-

ences, with a linear u and � > 0, owns an appliance (e.g., a cellular phone) that he is about

to use for n periods. The individual gets utility 1 in any period the appliance is used and 0

otherwise. In each period, there is an exogenous probability (1� p) that the appliance will
not work (it might be broken, fail to get reception, etc.). The individual can buy a periodic

3The same premium was suggested by Palacios-Huerta (1999). In this section we keep assuming that u
is linear. More generally, the gradual resolution premium is the value x that solves: u

�
u�1 (V�(p))� x

�
=

V� (Q
n) :
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insurance policy, which guarantees the availability of the appliance, for a price z 2 (1� p; 1).
Therefore, if he buys insurance for some period, he gets a certain utility of (1� z), and oth-
erwise he faces the lottery in which with probability p he gets 1, and with the remaining

probability he gets 0. For simplicity, assume that the price of a replacement appliance is 0,

so that the individual either carries it over from the last period or gets a new one for free in

the beginning of any period.

Suppose �rst that insurance is not available. Denote by X the total number of peri-

ods in which the appliance works. Since X is a binomial random variable, Pr (X = k) =�
n
k

�
pk (1� p)n�k, for k = 0; :::; n. Abusing notation, we also denote by p the probability

distribution over �nal outcomes. Applying Gul�s formula, one obtains

V�(p) =

Pn
k=h+1

�
n
k

�
pk (1� p)n�k k + (1 + �)

Ph
k=0

�
n
k

�
pk (1� p)n�k k

1 + �
Ph

k=0

�
n
k

�
pk (1� p)n�k

where h (p; �; n) is the unique natural number such that all prizes greater than it are elating

and all those smaller than it are disappointing.

Let Qn be the corresponding gradual (n-stage) lottery as perceived by the individual. By

the n-stage folding back procedure, its value is:

V� (Q
n) =

1

(1 + � (1� p))n
Pn

k=0

�
n

k

�
pk (1� p)n�k (1 + �)n�k k:

By Theorem 1, V�(p) > V� (Qn). By buying insurance, the individual can now a¤ect the

outcomes in every period. Using standard backward induction arguments, it can be shown

that the individual will buy insurance for all n periods if � > z�(1�p)
(1�z)(1�p) > 0. In that case,

z < 1� V�(Q
n)

n
. Nevertheless, if � is not too high,4 we have 1�p < 1� V�(p)

n
< z, meaning that

he would not buy insurance at all if he could avoid being aware of the gradual resolution of

uncertainty. This observation explains why and how the attractiveness of a lottery depends

not only on the uncertainty embedded in it, but also on the way this uncertainty is resolved

over time.

The value V� (Qn) can be decomposed as V� (Qn) = np�(np� V�(p))�(V�(p)� V� (Qn)),
where np is the expected value of the underlying lottery, np� V�(p) :=rp(� jp; n) is the risk
premium, and V�(p)�V� (Qn) :=grp(� jp; n) is the gradual resolution premium. Since V�(p)
decreases with �, rp (� jp; n) is a strictly increasing function of �. The behavior of the
gradual resolution premium, grp (� jp; n) is more subtle. We have the following result:

Proposition 2. In the insurance problem described above:

4The condition is: 1 + � < min
n

pn

pn+n(1�p)�1 ;
pnz

(1�z)(1�pn)�p(1�pn�1)�1

o
:
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(i) grp (� jp; n) > 0 8� 2 (0;1)
(ii) grp (0 jp; n) = 0 and lim

�!1
grp (� jp; n) = 0

(iii) grp(� jp; n) is strictly quasi-concave in �

See Figure 1.

Κ0,Κ0+1β

grp(β  p,n)

β Κ0+1,Κ0+2 n­1,nβ∗ β
β

Figure 1: grp(� jp; n). �k;k+1 is the value of � where h (� jp; n) decreases from (n� k) to
(n� (k + 1)). grp(� jp; n) is non-di¤erentiable in each such �k;k+1. k0 is the smallest

natural number that solves max
k0>n(1�p)

n�k0
n

In its original context, a higher � implies greater disappointment aversion (as well as

greater risk aversion). As we argued in the introduction, being averse to the gradual res-

olution of uncertainty can be interpreted as dynamic disappointment aversion. Under this

interpretation, it seems intuitive to expect the gradual resolution premium to be an increas-

ing function of �. This intuition is wrong and, in fact, item (ii) remains valid independent

of the decision problem under consideration.5 To see this, note that grp(� jp; n) is de�ned
as the di¤erence of two functions, both strictly decreasing in �. When � = 0, the decision

maker cares only about the expected value of the lottery. When � is su¢ ciently large, all

prizes but 0 become elating, and hence V�(p) converges to zero. Correspondingly, the value

of the gradual lottery, V� (Qn), converges to the value of the worst sub-lottery that by itself

approaches zero. Since grp(� jp; n) is a continuous function and is strictly positive on the
5Palacios-Huerta (Section 1.3) suggested the exact same mathematical model as a resolution to a behavior

reported by Samuelson (1963); Samuelson�s lunch colleague said that he would not risk $100 for a chance
of winning $200 in a toss of a coin but is willing to take a sequence of a hundred (independent) such bets.
Palacios-Huerta claimed (without proof) that the gradual resolution premium is increasing with �, that is,
@grp(�jp;n )

@� > 0. Proposition 2 item (ii) shows that this cannot be the case.
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positive reals, there must exist a �nite �, denoted �� in Figure 1, in which grp(� jp; n) is max-
imized.6 Item (iii) sheds further light on the behavior of moderate disappointment-averse

individuals. It suggests that �� (p; n) is unique, and that grp(� jp; n) is single-peaked. Be-
haviorally speaking, moderately disappointment-averse individuals are more inclined to pay

a higher premium than individuals who are either approximately disappointment-indi¤erent

or extremely disappointment-averse.

5. Discussion

5.1. Relaxing the time neutrality assumption

In this paper we assume that the function V�, which is applied recursively, does not change

over time. Time independent V� implies that the decision maker does not care when the

uncertainty is resolved as long as all resolution happens in a single stage. This assumption,

which is known as time neutrality (Segal, 1990; Dillenberger, 2010), precludes intrinsic pref-

erences for early or late resolution of uncertainty, as studied by Kreps and Porteus (1978),

Chew and Epstein (1989), and Grant, Kajii, and Polak (1998, 2000), among others. We now

suggest how to incorporate preferences for the timing of resolution of uncertainty into our

basic model. While we keep assuming that the decision maker evaluates compound lotter-

ies using the folding-back procedure, we relax the assumption that V� is time independent.

In particular, we assume that for all t, V�t is a disappointment aversion function, in which

ut = u for all t and �t is positive and increasing with t (for example, �t = 1� 1
t+1
). Increasing

�t (while keeping u �xed) implies that the decision maker becomes more disappointment-

averse (and more risk-averse) as the time of consumption gets closer.7 Intuitively, an early

bad signal is more likely to be corrected than a late signal, hence the decision maker is more

sensitive to later signals.

For a given lottery p, consider the set of two stage lotteries that induce the same proba-

bility distribution over �nal outcomes as p. If �1 < �2, the decision maker faces a trade-o¤:

since �t > 0 for t = 1; 2, Theorem 1 implies that he is averse to the gradual resolution of

uncertainty. But since V�(p) decreases in �, he prefers a lottery in which all resolution occurs

6The relationship between � and grp(� jp; n ) resembles that between risk aversion and the value of
information in an expected utility framework. The value of information for a certain decision problem is the
di¤erence between the certainty equivalents for the informed agent and the uninformed agent. An increase in
risk aversion has an ambiguous e¤ect on the value of information since it decreases both certainty equivalents.
It is well known that while the value of information is always nonnegative, it is not necessarily a monotone
function of risk aversion (see, for example, Freixas and Kihlstrom (1984).) In our setting, grp(� jp; n ) is
never a (globally) monotone function of �.

7Theorem 5 in Gul (1991) establishes that the risk attitude of two decision makers who have the same u
can be ranked solely by comparing their di¤erent �s.
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in the �rst stage to a lottery in which all resolution happens in the second stage. Therefore,

while a compound lottery that fully resolves in the �rst stage is unambiguously the most

preferred, it is not clear whether the decision maker prefers a non-degenerate compound

lottery to a lottery in which all resolution takes place in the second stage. An increase in

the distance between �1 and �2 favors the gradually resolved lottery, whereas the one-shot

aspect dominates as the compound lottery becomes more degenerate (for example, when one

of the second stage nodes is obtained with probability 1� ", and " > 0 is small enough).8

5.2. Dynamic disappointment aversion and the �nal-wealth hypothesis

We conclude with a brief remark on the relationship between our model and the common

hypothesis that, in risky environments, preferences are de�ned over distributions over �nal-

wealth levels. Rabin (2000) and Safra and Segal (2008) gave a parallel critique on a broad

class of smooth models of decision making under risk. These authors used calibration results

to argue that, under the �nal-wealth hypothesis, modest risk aversion over small stakes

gambles necessarily implies absurd levels of risk aversion over large stakes gambles. Both

Safra and Segal (2008) and Barberis, Huang, and Thaler (2006) argued that if the decision

maker faces some background risk, then a similar problem persists even if preferences are

non-di¤erentiable (i.e. if preferences display �rst-order risk aversion, as is the case with

Gul�s preferences);9 ;10 merging new gambles with preexisting ones eliminates the e¤ect of

�rst-order risk aversion.

Our model, which assumes that multi-stage lotteries are evaluated recursively, is consis-

tent with risk aversion over small stakes gambles and only moderate risk aversion over large

stakes gambles even if individuals face background risks. Our interpretation is that the value

of a lottery depends not only on its risk (the implied distribution over �nal-wealth), but also

on the way this risk is resolved over time. In particular, if most risk resolves gradually and is

evaluated frequently enough, then it generally cannot be compounded into a single lottery.

8The same tradeo¤ between early and one-shot resolution of uncertainty was analyzed in Köszegi and
Rabin (2009). Köszegi and Rabin studied a model in which utility additively depends on both current
consumption and on recent changes in (rational) beliefs about present and future consumption, where the
latter component displays loss aversion. Denote by 
t;T the weight that is given to changes in period t < T
beliefs about consumption in period T , and assume that the sequence f
t;T g is increasing with t. Under this
assumption, Köszegi and Rabin provided a set of results that identify the tradeo¤ that the decision maker
faces. In stating these results, they con�ned their attention to the case in which consumption happens only
in the last period and is binary. In our setup, this corresponds to compound lottery which involves only two
possible monetary prizes.

9First-order risk aversion means that the premium a risk averse individual is willing to pay to avoid an
actuarially fair random variable te� is proportional, for small t, to t. It implies �kinked� indi¤erence curves
along the main diagonal in a states-of-the-world representation (Segal and Spivak (1990)).
10For a direct proof that Gul�s preferences satisfy �rst-order risk aversion, see Loomes and Segal (1994).
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Our model implies �rst-order risk aversion over each realized gamble, and hence neither Ra-

bin�s nor Safra and Segal�s arguments apply. In other words, the mere existence of other

risks is not enough to eliminate the e¤ect of �rst-order risk aversion. Such an argument is

only compelling if the decision maker compounds risks that are resolved over a long period.11

6. Appendix

Proof of Proposition 2
Let 4V (� jp; n) :=grp(� jp; n), and for k = 2; 3; :::; n � 1, denote 4V (� jp; n) with

h (� jp; n) = n� k by 4V (k) (� jp; n). Some calculations show that

4V (k) (� jp; n)

= np� (1� p)
� (1� p)k�1

�
��
�Pn�(k+1)

j=0

�
j+k�2
j

�
pj
�
+ pn�k

��
n�2

n�(k+1)
�
� +

�
n�1
n�k
���

+ 1

(1 + � (1� p))
�
�
�Pn�1

j=k�1
�

j
j�(k�1)

�
pj�(k�1)

�
(1� p)k + 1

�
The denominator of 4V (k) (� jp; n) is always positive, whereas the coe¢ cient np� (1� p) is
strictly positive for � > 0. At � = 0 the numerator is equal to 1�

�
n�1
n�k
�
(1� p)k�1 pn�k which

is positive since
�
n�1
n�k
�
(1� p)k�1 pn�k is simply the probability of n � k successes in n � 1

trials of a Bernoulli random variable with parameter p. We then note that the nominator

is also increasing with �. Indeed, this is the case if
�Pn�(k+1)

j=0

�
j+k�2
j

�
pj
�
> pn�k

�
n�2

n�(k+1)
�
,

which is true since p < 1 and
Pn�(k+1)

j=0

�
j+k�2
j

�
=
�
n�2
n�k�1

�
. Therefore, item (i) is implied.

Since � = 0 implies expected utility, the �rst part of item (ii) is immediate. For the second

part of item (ii), observe that as � increases, the value of the sequential lottery (V (Qn)) is

(smoothly) strictly decreasing and converges to 0, the value of the worst prize in its support.

The value of the one stage lottery (V (bp)) is a¤ected in two ways when � increases. First,
given a threshold h (� jp; n), the value is (smoothly) strictly decreasing with �. Second,
h (� jp; n) itself is a decreasing step-function of �. For � large enough, all prizes but 0 are
elated and the value of the lottery is given by

Pn
k=1 (

n
k)pk(1�p)

n�kk

1+�(1�p)n !
�!1

0.

To show quasi-concavity (item (iii)), we show that grp(� jp; n) is single-peaked. Pick
�0 > 0 such that grp(�0 jp; n) = � > 0. Since lim

�!1
grp(� jp; n) = 0, there exists � :=

max
�
�
��grp (� jp; n) = �

2

	
and � <1. Thus grp(� jp; n) is a continuous function on the

compact interval
�
0; �
�
, and hence achieves its maximum on this domain. To show single-

peakedness , we have the following two claims:

11Recently, Freeman (2015) provides calibration results that quantify the connection between risk aversion
over small stakes and large stakes gambles in the presence of background risk, under the assumption that
multi-stage lotteries are evaluated recursively, using the same non-expected utility functional in each stage.
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Claim 1: 8k = 2; 3; :::; n� 1, 4V (k) (� jp; n) is either strictly increasing or single-peaked on
(0;1).

Proof : By di¤erentiating 4V (k) (� jp; n) with respect to �, one gets:

@

@�
4V (k) (� jp; n)

= np
C�2 +

�
2Apk (1� p)k � 2pn

�
n�2
n�k�1

�
(1� p)k

�
� +

�
(1� p) pk � pn

�
n�1
n�k
�
(1� p)k

�
pk (�� + p� � 1)2

�
B� (�p+ 1)k + 1

�2
Where C is some constant, and A :=

�Pn�(k+1)
j=0

�
j+k�2
j

�
pj
�
.

The roots of @
@�
4V (k) (� jp; n) are the roots of the second-degree polynomial in � that

appears in the nominator.

Evaluated at � = 0, this polynomial is equal to
�
pk � ppk � pn

�
n�1
n�k
�
(1� p)k

�
. Note

that �
pk � ppk � pn

�
n� 1
n� k

�
(1� p)k

�
> 0() 1 >

�
n� 1
n� k

�
pn�k (1� p)k�1

which is true as claimed before.

In addition, the slope of that polynomial at � = 0 is equal to the coe¢ cient of �,

2Apk (1� p)k�2pn
�
n�2
n�k�1

�
(1� p)k, which is positive since

�Pn�(k+1)
j=0

�
j+k�2
j

�
pj
�
> pn�k

�
n�2
n�k�1

�
.

To summarize, both the slope and the intercept of the polynomial in the nominator are

positive at � = 0. Therefore, if C � 0 then @
@�
4V (k) (� jp; n) has no positive roots, and

otherwise it has exactly one positive root.k
Note that 4V (� jp; n) is a continuous function that is not di¤erentiable in the points

where h (� jp; n) changes. For k = 2; 3; :::; n � 1, let �k;k+1 be the value of � where

h (� jp; n)decreases from (n� k) to (n� (k + 1)). Using the same notation as above, we
claim that at the switch point, the slope of the resolution premium decreases.

Claim 2: lim
�!��k;k+1

@
@�
4V (k) (� jp; n) > lim

�!+�k;k+1

@
@�
4V (k+1) (� jp; n)

Proof: Apart from at � = 0, where 4V (k) (0 jp; n) = 4V (k+1) (0 jp; n) = 0, it can be

shown that the two curves cross at exactly one more point, given by

�k;k+1=
np� (n� k)�Pn�(k+1)

j=0 (n� k � j)
�
j+k�1
j

�
pj
�
(1� p)k+1

Note that �k;k+1 > 0 i¤ p > n�k
n
. To prove the claim it will be su¢ cient to show that
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@
@�
4V (k) (0 jp; n) < @

@�
4V (k+1) (0 jp; n), since this implies that at �k;k+1, 4V (k+1) (� jp; n)

crosses 4V (k) (� jp; n) from above. Now

@

@�
4V (k) (0 jp; n) = np

�
pk � ppk � pn

�
n�1
n�k
�
(1� p)k

�
pk

and

@

@�
4V (k+1) (0 jp; n) = np

�
pk+1 � ppk+1 � pn

�
n�1
n�k�1

�
(1� p)k+1

�
pk+1

:

Therefore,

@

@�
4V (k+1) (0 jp; n) > @

@�
4V (k) (0 jp; n)

() 1

pk
n (�p+ 1)k pn

�
p

�
n� 1
�k + n

�
+ p

�
n� 1

�k + n� 1

�
�
�

n� 1
�k + n� 1

��
> 0

() p

�
n� 1
�k + n

�
+ p

�
n� 1

�k + n� 1

�
�
�

n� 1
�k + n� 1

�
> 0

() p >

�
n�1

�k+n�1
��

n�1
�k+n

�
+
�

n�1
�k+n�1

� = (n� k)
n

:k

To complete the proof, we verify that both claims above are also valid for the two extreme

cases: k = 1 (where only the best prize, n, is elation) and k = n (only the worst prize, 0, is

disappointment).

k = 1: Using the same notation as above we have:

4V (1) (� jp; n) = np�
 
n�2X
j=0

pj

!
(p� 1)2 � + 1

(1 + (1� p) �) (1 + (1� pn) �)

and

@

@�
4V (1) (� jp; n) = n (1� p) (p� pn) (1� ppn) �2 + 2� + 1

(�� + pn� � 1)2 (�� + p� � 1)2
> 0

for all � � 0 so 4V (1) (� jp; n) is strictly increasing with � (claim 1).

For the second claim, similar calculations establish that:

@

@�
4V (2) (0 jp; n) > @

@�
4V (1) (0 jp; n)() p >

n� 1
n

so claim 2 follows as well.
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k = n:

4V (n) (� jp; n) = np2� (1� p)

 
n�1P
j=1

�
n�1
j

�
pj�1 (�1)j�1

!
(1 + � (1� p)) (1 + � (1� p)n)

Let C =

 
n�1P
j=1

�
n�1
j

�
pj�1 (�1)j�1

!
, so:

@

@�
4V (n) (� jp; n) = Cnp2 (p� 1) �2 (1� p)n+1 � 1

(� (�p+ 1)n + 1)2 (�� + p� � 1)2

which is clearly single peaked on (0;1) (claim 1), and, again by similar calculations:

@

@�
4V (n) (0 jp; n) > @

@�
4V (n�1) (0 jp; n)() p >

1

n

which is claim 2.

Combining claim 1 and claim 2 ensures that 4V (� jp; n) is strictly quasi-concave on
(0;1). �
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